Elastic Constants of $(Ti_{1-x}V_x)_2O_3$ at Low Temperatures*

J. G. BENNETT AND R. J. SLADEK

Department of Physics, Purdue University, West Lafayette, Indiana 47907

Received July 3, 1974

Measurements have been made of the velocities of 30 MHz ultrasonic waves in single crystal samples of $(\mathrm{Ti}_{1-x}\mathrm{V}_x)_2\mathrm{O}_3$ with $0 \le x \le 0.10$ which allow some of the elastic constants to be determined from T=1.5 K up to either 80, 120, or 300 K. For $\mathrm{Ti}_2\mathrm{O}_3$ —which is a narrow gap semiconductor below about 400 K— C_{11} and C_{33} have temperature dependences

* Supported by the National Science Foundation Grants GH-33574 (MRL) and GH-33383.

explainable by lattice anharmonicity. The C_{11} , C_{33} , and C_{44} measured for samples with $x \ge 0.02$ are smaller than for $\mathrm{Ti}_2\mathrm{O}_3$, and C_{11} and C_{33} of such samples are less T dependent than for $\mathrm{Ti}_2\mathrm{O}_3$. It appears that vanadium causes negative electronic contributions to C_{11} and C_{33} since computer calculations show that the latter can arise as a consequence of the ultrasonic stress shifting a narrow e_g vanadium impurity band relative to the wide a_{1g} Ti 3-d band which it overlaps